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Anticancer and carcinogenic properties
of curcumin: Considerations for its clinical
development as a cancer chemopreventive and
chemotherapeutic agent
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A growing body of research suggests that curcumin, the major active constituent of the dietary spice

turmeric, has potential for the prevention and therapy of cancer. Preclinical data have shown that cur-

cumin can both inhibit the formation of tumors in animal models of carcinogenesis and act on a vari-

ety of molecular targets involved in cancer development. In vitro studies have demonstrated that cur-

cumin is an efficient inducer of apoptosis and some degree of selectivity for cancer cells has been

observed. Clinical trials have revealed that curcumin is well tolerated and may produce antitumor

effects in people with precancerous lesions or who are at a high risk for developing cancer. This

seems to indicate that curcumin is a pharmacologically safe agent that may be used in cancer chemo-

prevention and therapy. Both in vitro and in vivo studies have shown, however, that curcumin may

produce toxic and carcinogenic effects under specific conditions. Curcumin may also alter the effec-

tiveness of radiotherapy and chemotherapy. This review article analyzes the in vitro and in vivo can-

cer-related activities of curcumin and discusses that they are linked to its known antioxidant and pro-

oxidant properties. Several considerations that may help develop curcumin as an anticancer agent are

also discussed.
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1 Introduction

Curcumin (diferuloylmethane) is a yellow pigment derived

from the rhizome of the plant Curcuma longa L. The pow-

dered rhizome of this plant, called turmeric, is commonly

used in the preparation of curries. In addition to its preser-

vative, flavoring, or coloring properties in the diet, turmeric

has been used in Asian medicine for generations for the

treatment of many disorders including inflammation, skin

wounds, hepatic and biliary disorders, cough, as well as cer-

tain tumors. Curcumin, a polyphenol with a diarylheptanoid

structure that contains two a,b-unsaturated ketones, is con-

sidered to be the major active constituent of turmeric. The

chemical properties and the historical background of curcu-

min have been reviewed elsewhere [1, 2].

Although curcumin has shown a wide range of pharma-

cological activities, its anticancer properties have attracted

a great interest. The anticancer activity of curcumin has

been the subject of hundreds of papers and has been

reviewed in several recent articles [1–15]. These review

articles have summarized preclinical data showing that cur-

cumin can inhibit the formation of tumors in animal models

of carcinogenesis, can induce apoptosis in cancer cells from

different origin, and can act on a variety of signal transduc-

tion pathways and molecular targets involved in the devel-

opment of cancer. Based on preclinical and clinical studies

in which curcumin was administered orally to animals and

humans, most of these articles consider that curcumin is a

nontoxic or low-toxic agent. This seems to indicate that the

putative anticancer activity of curcumin may be accompa-

nied by a low toxicity. These articles also show that the sys-

temic bioavailability of curcumin following oral dosing is
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low and that this agent is rapidly cleared from the body,

therefore suggesting that the anticancer activity of oral cur-

cumin may be limited to the gastrointestinal tract [1–15].

The present article compiles and analyzes the in vitro and

in vivo cancer-related properties of curcumin. Since cancer

chemopreventive and chemotherapeutic strategies are usu-

ally aimed at preventing or treating a specific type of can-

cer, the first aim of this work is to compile the most relevant

cancer-related effects of curcumin on several common

types of cancer. The limited bioavailability and extensive

metabolism of curcumin suggest that many of its anticancer

effects observed in vitro may not be attainable in vivo. This

article analyzes which of these reported anticancer effects

may be relevant in vivo. It is also discussed that, although

relatively high concentrations of curcumin have not shown

significant toxicity in short-term studies, these concentra-

tions may lead to toxic and carcinogenic effects in the long

term. In addition, this article provides evidence that sug-

gests that the cancer-related activities of curcumin may be

linked to its known antioxidant and pro-oxidant properties.

After a critical analysis of the cancer-related properties of

curcumin, several considerations that may help develop

curcumin as a cancer chemopreventive and chemotherapeu-

tic agent are discussed.

2 Anticancer activity of curcumin

The most relevant cancer chemopreventive and chemother-

apeutic effects of curcumin on several common types of

cancer are compiled in Table 1. This table gathers reports in

which curcumin has shown cancer chemopreventive activ-

ity in animal models of carcinogenesis, as well as selected

in vitro and in vivo studies that may have relevance to cancer

chemoprevention. This table also compiles the most rele-

vant reports in which curcumin has shown chemotherapeu-

tic effects; it mainly includes selected studies in which this

dietary agent induced apoptosis in cancer cells from differ-

ent cancer types, as well as several works that studied the

chemotherapeutic effects of curcumin in vivo. The chemo-

preventive and chemotherapeutic properties of curcumin

are discussed in the following sections.

2.1 Cancer chemopreventive activity of curcumin.

Possible in vivomechanisms

The limited progress achieved by cancer therapy in the last

three decades [16, 17] has increased the interest of research-

ers in cancer chemoprevention. It is becoming accepted that

cancer chemoprevention (the use of chemicals to prevent,

stop, or reverse the process of carcinogenesis) is an essen-

tial approach to controlling cancer. In addition, since the

process of carcinogenesis can take several decades to com-

plete, it makes more sense to prevent cancer at its earliest

stages by using low-toxic chemicals (chemoprevention)

than to wait until the disease has reached its final stages,

where it becomes necessary to use more toxic chemicals

(chemotherapy). Cancer chemoprevention can be aimed at

healthy populations or at those with cancer predisposition

(people with precancerous lesions or those who are at high

risk for developing cancer). In the first case, chemopreven-

tive interventions must be completely devoid of toxicity

and chemicals should be supplemented orally. In the second

case, some degree of toxicity is acceptable and the oral

route is preferable [18–20].

Several lines of evidence suggest that curcumin may be

used in cancer chemoprevention. Firstly, epidemiological

data suggest that the incidence of several common cancers

(i. e., colon, breast, prostate, and lung cancer) is higher in

Western countries than in countries such as India, where

curcumin is highly consumed [1, 16]. Secondly, an elevated

number of studies in rodents has shown that curcumin can

prevent several types of cancer (e.g., colon, lung, breast,

liver, stomach, esophagus, skin, lymphomas, and leukemia)
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Table 1. Cancer chemopreventive and chemotherapeutic effects of curcumin on different types of cancer

Cancer type Chemopreventive effects Chemotherapeutic effects

Lung [124, 210–217] [181, 218, 219]
Breast [185, 186, 220–226] [74, 78, 227–232]
Colon [56, 82, 83, 217, 225, 233–241] [4, 139–141, 209, 242–249]
Prostate [250–252] [172, 173, 178, 251, 253–264]
Stomach [70, 210, 265–268] [179, 246]
Liver [39–44, 63, 130, 210, 216, 217, 269–284] [75, 142, 285]
Pancreas [286–288] [157, 182, 208, 218, 289]
Kidney [40, 40, 41, 45, 45, 135, 217, 290, 291] [75, 143]
Bladder [21, 292] [176, 293, 294]
Blood/Lymph [224] [54, 77, 80, 160, 168, 295–303]
Skin [223, 304–315] [158, 316–319]
Esophagus [320, 321]
Brain/head and neck [41, 46–49] [322–329]
Uterus [330, 331]
Ovary [332–336]
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induced by different carcinogens (see Table 1). Thirdly, a

Phase I clinical trial in participants with cancer predisposi-

tion taking curcumin orally for 3 months showed little tox-

icity and revealed histological improvement of precancer-

ous lesions in 7 out of 25 patients [21]. Finally, hundreds of

preclinical studies have reported that curcumin can act on a

variety of pathways and molecular targets involved in can-

cer development (see ref. [5, 13, 15, 22] for reviews and

Table 2 for recent selected reports). Most of these studies,

however, have been conducted using high concentrations of

curcumin, which cannot be achieved through the oral route.

Several human studies have revealed that, after oral admin-

istration, the levels of curcumin in plasma are very low

(generally in the nanomolar range); while they are higher in

colorectal tissue (low micromolar) (see Table 3). This sug-

gests that, outside of the gastrointestinal tract, most of the

reported cancer-related effects of curcumin may not be

achieved in vivo. In order to understand the possible mecha-

nisms involved in the putative cancer preventive activity of

curcumin, it is essential to analyze which of these numerous

targets are really implicated in vivo. After reviewing the lit-

erature, the most relevant effects of curcumin in vivo have

been compiled in Table 4.

Despite being challenged by some researchers [23–26],

the most accepted theory of cancer (“somatic mutation

theory of cancer”) considers that this disease is caused by

DNA alterations [27]. As shown in Table 4, several in vivo

studies have revealed that curcumin can protect DNA from

damage induced by different carcinogens. It is widely

accepted, even by those who challenge the somatic mutation

theory of cancer, that the formation of a malignant tumor

requires that tumor cells acquire several capabilities (the so-

called hallmarks of cancer), such as apoptosis resistance,

increased angiogenesis, or capacity of invasion andmetasta-

sis [28]. The formation of a cancer requires that tumor cells

develop apoptosis resistance, and it has been observed that

curcumin can produce amild but yet significant activation of

apoptosis in vivo (see references in Table 4). Angiogenesis,

S105

i 2008WILEY-VCH Verlag GmbH &Co. KGaA,Weinheim www.mnf-journal.com

Table 2. Recent selected reports showing possible molecular targets of curcumin

Molecular targets References

Inhibition of NF-kappaB in cancer cells by curcumin. These recent reports, which are in agreement with previous
results, suggest that this effect of curcuminmight be exploited therapeutically

[176, 182, 335]

Inhibition of MDM2 oncogen through the transcription factor ETS2 bymodulation of the PI3K/mTOR signaling
pathway. This report also shows that curcumin sensitizes human cancer cells to chemotherapy and radiation
through down-regulation of this oncogen

[173]

Induction of proteasome-mediated down-regulation of cyclin E and up-regulation of the CDK inhibitors p21 and
p27 in several cancer cell lines; these effects may contribute to the antiproliferative effects of curcumin against
various tumors

[337]

Inhibition of the Akt/mammalian target of rapamycin (mTOR)/p70S6K and the extracellular signal-regulated
kinases 1/2 (ERK1/2) pathways. These effects resulted in the induction of authophagy (a response of cancer
cells to various anticancer therapies, also designated as programmed cell death type II) and suppression of the
growth of malignant gliomas

[322]

Inhibition of Akt and its key target Bad in B lymphoma via inhibition of spleen tyrosine kinase (Syk) [299]
This report shows that c-Abl, a nonreceptor tyrosine kinase that regulates stress responses induced by oxidative
agents such as ionizing radiation and H2O2, regulates curcumin-induced cell death through activation of c-Jun
N-terminal kinase

[338]

Induction of an increase in the protein levels of the proapoptotic Bcl-2 family members Bax and Bak, which was
essential for maximum apoptotic activity

[339]

Regulation of signal transducer and activator of transcription (STAT) [297, 340, 341]
Inhibition of human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor
(EGFR) through reduction of the activity of the transcription factor Egr-1

[249]

Inhibition of constitutively activated targets of PI3'-kinase (AKT, FOXO andGSK3) in T-cell acute lymphoblastic
leukemia cells, leading to the inhibition of proliferation and induction of caspase-dependent apoptosis

[296]

Down-regulation of the Notch-1 signaling pathway [289]

Table 3. Concentrations of curcumin in human plasma or tissues following oral administration

Oral dose Plasma/tissue concentrations (lmol/L or lmol/kg) Reference

2 g a0.03 in plasma [342]
4, 6, and 8 g 0.51 l 0.11, 0.63 l 0.06, and 1.77 l 1.87 in plasma [21]
0.18 g/day/4 months Not detectable in plasma or urine [343]
3.6 g/day/4 months 0.01 in plasma, 0.1–1.3 in urine [84]
3.6 g/day/7 days Traces in peripheral circulation, 12.7 l 5.7 in normal colorectal tissue,

7.7 l 1.8 in malignant colorectal tissue
[81]

3.6 g/day/7 days Low nM levels in the peripheral or portal circulation, not found in liver tissue [71]
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the generation of new blood vessels, is necessary for the for-

mation of solid tumors; without vascular growth, the tumor

mass is restricted to a tissue-diffusion distance of approxi-

mately 0.2 mm. Malignant tumors are known to activate

angiogenesis, and several reports have shown that curcumin

can inhibit angiogenesis in vivo. It is recognized that the

metastatic spread of primary tumors accounts for approxi-

mately 90% of all cancer deaths. The process by which cells

from a localized tumor invade adjacent tissues and metasta-

size to distant organs can therefore be considered the most

clinically relevant process involved in carcinogenesis [29,

30]. Experimental data support that curcumin can inhibit

invasion andmetastasis invivo (Table 4).

Accumulating evidence suggests that reactive oxygen

species (ROS) play a key role in carcinogenesis [31–33]. It

has been demonstrated that the malignant phenotype of can-

cer cells can be reversed simply by reducing the cellular lev-

els of ROS [34–38]. Antioxidant agents prevent or reduce

excessive cellular levels ofROSand, therefore, play aprotec-

tive role in cancer development. For instance, experimental

data revealed that the expression of the antioxidant enzyme

catalase in malignant cells decreased their cellular levels of

hydrogen peroxide (H2O2); these cells reverted to a normal

appearance, their growth rate normalized, and they were no

longer capable of producing tumors in athymic mice [34].

These data suggest that the extensively reported antioxidant

activity of curcumin may be a key mechanism by which this

dietary phytochemical prevents cancer in vivo. As shown in

Table 4, numerous studies have reported that curcumin

exerts antioxidant effects in vivo. Interestingly, the antioxi-

dant effects of curcumin following oral administration are

not restricted to the gastrointestinal tract, as they have also

been observed, for instance, in the liver [39–44], kidneys

[40, 41, 45], or the brain [41, 46–49].

Inhibition of Phase I enzymes, such as cytochromes P450

(CYP), and activation of Phase II enzymes, such as gluta-

thione S-transferases (GST), may participate in the cancer

preventive activity of curcumin, as these enzymes play an

important function in the activation and detoxification of

carcinogens. As shown in Table 4, some studies indicate

that curcumin can inhibit cytochromes P450 and activate

GST in vivo.

Based on hundreds of preclinical reports, curcumin is

regarded in the scientific literature as an anti-inflammatory

agent. Several studies have reported beneficial effects when

oral curcumin has been given to patients suffering from

inflammatory disorders [50–52]. Recent research has estab-

lished that the activation of the nuclear factor kappa B (NF-

jB) is a crucial event both in inflammation and cancer [53].

Many recent reports have shown that curcumin is an efficient

NF-jB inhibitor. For instance, Bharti et al. [54] observed

that curcumin induced down-regulation of NF-jB in multi-

plemyeloma cells in a time and dose-dependentmanner. The

efficient down-regulation of NF-jB in these cell lines

required concentrations of curcumin in the 5–50 lM range

and exposure times of approximately 2–4 h. As shown in

Table 3 and observed in some animal studies, most data sug-

gest that the plasma concentration of curcumin following

oral dosing is low, and that this agent is rapidly cleared from

the plasma and tissues [55–57]. This suggests that NF-jB

inhibition by curcumin may not be relevant in vivo. Experi-

mental data have demonstrated, however, that curcumin can
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Table 4. Possible mechanisms involved in the cancer chemopreventive activity of curcumin in vivo

Mechanism References

Inhibition/protection fromDNA damage/alterations [81, 183, 191, 240, 275, 313, 344–348]
Inhibition of angiogenesis [208, 209, 259, 349–352]
Inhibition of invasion/metastasis [215, 250, 353, 354]
Induction of apoptosis [82, 83, 259]
Antioxidant activity [39–49, 70, 135, 240, 281, 348, 355–375]
Inhibition of cytochromes P450 [210, 321, 376, 377]
Induction of GST [40, 220, 240, 377–379]
Inhibition of NF-jB [190, 271, 273, 276, 281, 310, 353, 371, 380–387]
Inhibition of AP-1 [381, 384, 387]
Inhibition of MMPs [250, 266, 353, 384, 388]
Inhibition of COX-2 [273, 276, 310, 348, 353, 389–391]
Inhibition of TNF-a [187, 206, 381, 392–394]
Inhibition of IL-6 [381, 392]
Inhibition of iNOS [276, 389, 395]
Inhibition of IL-1b [47, 381, 384]
Inhibition of oncogens ras/fos/jun/myc [272, 306, 308, 396]
Inhibition of MAPK [385, 389]
Activation of Nrf2 [130]
Induction of HO-1 [131]
Inhibition of ornithine decarboxylase [45, 223, 239, 304, 305, 314, 315, 397]
Activation of PPAR-c [206, 375, 391]
Immunostimulant/immunorestorer [59, 398–401]
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inhibit NF-jB activity in vivo (Table 4). It is well accepted

that an increase in the cellular levels of ROS such as H2O2

results in the activation ofNF-kB [58] andmany reports have

shown that curcumin can reduce the cellular levels of ROS in

vivo (Table 4, antioxidant activity). This suggests that curcu-

minmay prevent the activation ofNF-jB in vivo by reducing

the cellular levels ofROS.

Table 4 compiles references showing that, in vivo, curcu-

min can also modulate several other targets involved in car-

cinogenesis, including inhibition of activator protein 1 (AP-

1), matrix metalloproteinases (MMPs), cyclooxygenase-2

(COX-2), tumor necrosis factor alpha (TNF-a), IL-6, IL-

1b, inducible nitric oxide synthase (iNOS), oncogens ras/

fos/jun/myc, mitogen-activated protein kinases (MAPK),

and ornithine decarboxylase; or induction/activation of

nuclear factor E2-related factor 2 (Nrf2), heme oxygenase 1

(HO-1), and peroxisome proliferator-activated receptor-

gamma (PPAR-c). Curcumin has also been shown as an

immunostimulant and immunorestorer in vivo; this mecha-

nism may also participate in the cancer preventive activity

of curcumin [59].

Recent data suggest that the hypoxia-inducible factor 1

(HIF-1) may be a key target for cancer chemoprevention

[20]. In fact, the most important cancer gene pathways

seem to culminate in the activation of this transcription fac-

tor [27]. HIF-1 activation is observed in most human can-

cers and has been associated with increased patient mortal-

ity. For instance, Zhong et al. [60] identified increased HIF-

1 expression (relative to adjacent normal tissue) in 13 tumor

types, including lung, prostate, breast, and colon carci-

noma, which are the most common cancers in developed

countries. In addition, HIF-1 activation seems to explain all

the hallmarks of cancer [20, 61, 62]. These data suggest that

HIF-1 activation is a key event in carcinogenesis and may

therefore represent a key target for cancer chemopreven-

tion. Recent in vitro studies have shown that curcumin can

inhibit HIF-1 [63, 64]. Evidence suggests that curcumin

might also inhibit HIF-1 activity in vivo. Indeed, it is now

well established that HIF-1 can be activated by an increase

in the cellular levels of ROS (e.g., H2O2) [65–68], and cur-

cumin can reduce the cellular levels of ROS in vivo (see

references in Table 4, antioxidant activity, e.g., [69, 70]).

Since curcumin is extensively metabolized in the body

[55–57, 71–73], it is important to note that the in vivo anti-

cancer properties of curcumin (Table 4) may be mediated,

at least in part, by its metabolites. The evaluation of the

anticancer properties of curcumin metabolites at relevant

doses will probably help understand how curcumin works

in vivo.

2.2 Cancer chemotherapeutic properties of

curcumin

Therapeutic selectivity, or preferential killing of cancer

cells without significant toxicity to normal cells, is one of

the most desirable properties of a cancer chemotherapeutic

agent. It is worth mentioning that several reports have

shown that curcumin can kill cancer cells selectively [74–

78]. For instance, the percentage of apoptosis induced by

curcumin (40 lM, 24 h) in three cancer cell lines (including

HepG2 hepatocellular carcinoma cells) was approximately

90%, while it was lower than 3% in five different types of

normal cells (including normal hepatocytes) [76]. Like-

wise, curcumin (48 h exposure) induced apoptosis in

chronic lymphocytic leukemia (B-CLL) cells from 14

patients at lower concentrations (EC50 = 5.5 lM) than in

whole mononuclear cells from healthy donors (EC50 =

21.8 lM) [77]. The percentage of apoptotic cells induced

by curcumin (40 lM, 24 h) was also higher in the multi-

drug-resistant breast carcinoma cell line MCF-7/TH

(46.65%) than in the human mammary epithelial cell line

MCF-10A (1.80%) [74]. Gautam et al. [79] observed, how-

ever, that curcumin-induced inhibition of cell proliferation

was not selective for cancer cells, although they also found

that inhibition of cell proliferation by curcumin was not

always associated with apoptosis.

Table 1 (chemotherapeutic effects) compiles experimen-

tal studies that have demonstrated that curcumin induces

apoptosis in cancer cells from different origins. These

reports show that curcumin induces apoptosis in a dose-

dependent and time-dependent manner (see, for instance,

ref. [76, 80]). Although the exposure times and doses

required to induce apoptosis in cancer cells vary depending

on the studied cell lines, most reports show that cancer cells

exposed to curcumin 5–50 lM for 24 h or longer undergo

apoptosis. At short exposure times, however, these concen-

trations of curcumin are not high enough to induce apoptosis

efficiently. For instance, the percentage of apoptosis

observed in MCF-7, MDAMB, and HepG2 cancer cells

exposed to curcumin 50 lM for 2 h was 10% or lower [76].

As mentioned before, curcumin has low oral bioavailability

(Table 3) and is rapidly cleared from the plasma and tissues

[55–57]. This suggests that the oral administration of curcu-

minmaynot result in efficient induction of apoptosis invivo.

The concentrations of curcumin observed in colon tissue

following oral administration (approximately 10 lmol/kg)

[81] suggest that oral curcumin can induce apoptosis in the

gastrointestinal tract efficiently. This is supported by exper-

imental data that have shown that curcumin can induce

apoptosis in colon cells in vivo [82, 83]. On the other hand,

it has been shown that curcumin undergoes extensive meta-

bolic conjugation and reduction in the gastrointestinal tract

[57]; this suggests that the high concentrations of curcumin

achieved in the colon may not be held enough time to allow

this agent to induce apoptosis efficiently. For instance, the

apoptotic index in azoxymethane-induced colonic tumors

in rats was 8.3% in the control group and 17.7% in a group

that received 0.2% of curcumin in the diet [82]. Although

this mild activation of apoptosis may be useful in cancer

chemoprevention, it does not seem to be enough to be use-
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ful in cancer chemotherapy. Accordingly, when 15 patients

with advanced colorectal cancer refractory to standard che-

motherapies were treated with curcumin at doses up to 3.6 g

daily for up to 4 months, no partial responses to treatment

or decreases in tumor markers were observed [84]. These

data suggest that the therapeutic potential of oral curcumin

is low and that alternative routes of administration or deliv-

ery systems should be explored. A different approach to

overcome the “unfavorable” pharmacokinetics of curcumin

would be the development of curcumin analogs with a bet-

ter pharmacokinetic profile that retained curcumin anti-

cancer properties. Several curcumin analogs have been syn-

thesized and their anticancer activity has been evaluated

[85–90].

3 Toxic and carcinogenic properties of

curcumin

The toxic and carcinogenic properties of an extract of tur-

meric that is commonly added to food items and contains a

high percentage of curcumin (79–85%) were evaluated in

rats and mice by the National Toxicology Program, USA

[91]. The percentage of curcumin of this extract is similar

to that of commercial grade curcumin [2]. Animals were

fed diets containing the turmeric extract at different concen-

trations for periods of 3 months (0.1, 0.5, 1, 2.5, and 5%)

and 2 years (0.2, 1, and 5%). Hyperplasia of the mucosal

epithelium was observed in the colon of rats that received

5% of turmeric extract for 3 months in the diet. Despite this

unfavorable effect and a significant increase in liver

weights in rats and mice fed with concentrations of 0.5% or

higher, no signs of carcinogenic lesions were observed in

these 3-month studies. However, toxic and carcinogenic

effects were observed when animals were fed with the tur-

meric extract for a period of 2 years. Thus, male or female

rats that received turmeric extract had ulcers, chronic active

inflammation, hyperplasia of the cecum or forestomach, or

increased incidences of clitoral gland adenomas; these

effects were mainly observed in the group fed with a 5% of

turmeric extract. Likewise, mice fed with different concen-

trations of the turmeric extract had increased incidence of

hepatocellular adenoma (1% group) or carcinomas of the

small intestine (0.2 and 1% groups). In the 2-year study of

mice, a 0.2% of turmeric extract in the diet was estimated to

deliver average daily doses of curcumin of approximately

200 mg/kg body weight [91].

Several mechanisms may account for the toxic and carci-

nogenic properties of curcumin. Although many studies

have shown that curcumin can prevent DNA damage (see

references in Table 4), it has also been demonstrated that cur-

cumin can induce DNA damage/alterations in vitro [92–

103] and in vivo [104, 105]. These studies revealed that cop-

per facilitates curcumin-induced DNA damage and that

ROSplay an important role in this activity.DNA topoisomer-

ase II (topo II) may also play a role in curcumin-induced

DNA damage, as curcumin has been described in vitro as a

topo II poison and as topo II poisons induce topo II-mediated

DNA damage [106]. We have recently observed that curcu-

min induces high levels of topoisomerase I and II–DNA

complexes in human leukemia cells; although the induction

of cytotoxic levels of topo–DNA complexes may be

exploited therapeutically, the induction of nonlethal levels of

these complexes may lead to carcinogenic effects [107].

Other dietary agents such as flavonoids (e.g., genistein) are

known to induce topo II-mediated DNA damage, and a high

consumption of these agents has already been associated

with a higher risk of leukemia in humans [108, 109].

Curcumin possesses two electrophilic a,b-unsaturated

ketones in its structure, which can react with nucleophilic

groups through a reaction termed Michael addition. These

a,b-unsaturated ketones can react covalently with the thiol

(SH) groups of cysteine residues of different proteins; this

may produce toxic effects (Fig. 1). For instance, Wang et al.

[110] showed that thiol-reactive drugs containing an a,b-

unsaturated ketone induced topo II–DNA complexes

through thiol alkylation of topo II, and that these topo II–
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Figure 1. Possible mechanisms involved in the toxic and car-

cinogenic properties of curcumin. Curcumin possesses two

electrophilic a,b-unsaturated ketones that can react with

nucleophilic groups (e.g., SH groups of proteins) through a

reaction called Michael addition; this may produce toxic and

carcinogenic effects. Specific concentrations of curcumin can

also produce toxic and carcinogenic effects by increasing the

cellular levels of ROS.



Mol. Nutr. Food Res. 2008, 52, S103–S127

DNA complexes were completely abolished in mutant yeast

topo II with all cysteine residues replaced with alanine.

They also showed that the potency of these drugs to stimu-

late topo II cleavable complexes correlated with their abil-

ity to undergo Michael addition [110]. This suggests that

the formation of topo II–DNA complexes induced by cur-

cumin [106] may be mediated by this reaction. Likewise,

since drugs containing an electrophilic a,b-unsaturated

ketone can produce inactivation of the tumor suppressor

p53, Moos et al. evaluated the ability of curcumin to inacti-

vate p53. They observed that curcumin disrupted the con-

formation of the p53 protein required for its serine phos-

phorylation, its binding to DNA, its transactivation of p53-

responsive genes and p53-mediated cell cycle arrest [111].

These results are in agreement with another work that

showed that curcumin can induce p53 degradation and

inhibit p53-induced apoptosis [112]. Although these effects

have not been observed in vivo, they support that curcumin

may produce carcinogenic effects, as the inactivation of the

tumor suppressor protein p53 is an important carcinogenic

event.

Evidence indicates that an increase in the cellular levels

of ROS (e.g., superoxide anion (O29
– ), H2O2) plays a key

role in carcinogenesis, and it is now well established that

curcumin can increase the cellular levels of ROS (discussed

in Section 4). Fang et al. [113] observed that curcumin

increased the cellular levels of ROS by irreversibly modify-

ing the antioxidant enzyme thioredoxin reductase (TrxR).

In addition, the authors provided data supporting that this

modification is caused by a reaction involving the a,b-unsa-

turated ketones of curcumin and the -SH and -SeH groups

of the cysteine and selenocysteine residues of the active site

of the enzyme.

Based on short-term studies conducted in animals and

humans, it is generally considered that curcumin is a safe

agent when administered orally (see [1, 2, 14] and referen-

ces therein). No treatment-related toxicity was reported in

25 patients taking curcumin at concentrations up to

8000 mg/day (l115 mg/kg/day) for a period of 3 months

[21]. As discussed above, no carcinogenic effects were

observed in mice fed with turmeric extract for 3 months

[91]. After 2 years, however, carcinogenic effects were

observed in mice fed with concentrations of turmeric that

delivered average doses of curcumin of approximately

200 mg/kg/day [91]. This suggests that we cannot conclude

that oral consumption of curcumin is safe without conduct-

ing long-term studies in humans, as dietary supplements

containing high concentrations of curcumin may produce

carcinogenic effects when ingested chronically.

4 ROS, cancer, and curcumin

This section of the article discusses that many cancer-

related activities of curcumin may be mediated by its ability

to both reduce and increase the cellular levels of ROS, i. e.,

by its antioxidant and pro-oxidant properties.

4.1 Key role of ROS in cancer development and

cancer therapy

Most of the energy that aerobic cells need to live is obtained

through oxidative phosphorylation. In this process, ATP

generation is coupled with a reaction in which oxygen (O2)

is reduced to water (H2O) by a mitochondrial protein com-

plex called cytochrome oxidase. In this reaction, four elec-

trons and four protons are added to O2 to form two mole-

cules of H2O. However, when a molecule of O2 gains only

one electron to form O29
– , this highly reactive species tends

to gain three more electrons and four protons to form two

molecules of H2O; this process involves several reactions

and generally results in the production of other ROS such as

H2O2, hydroxyl radical (OH9) and peroxynitrite (ONOO
– ).

It is now recognized that the controlled generation of

ROS has an important physiological role [114]. An unre-

strained production of ROS, however, seems to play a fun-

damental role in cancer development [31–33]. Thus, it has

been shown that ROS, such as O29
– and H2O2, can cause and

mediate cell malignant transformation [34, 115–118].

Overexpression of O29
– and H2O2-detoxifying enzymes

(e.g., superoxide dismutases or catalase) can reverse the

malignant properties of different types of cancer cells [34–

38]. In addition, recent data suggest that an increase in the

cellular levels of O29
– and H2O2 may explain key aspects of

the carcinogenesis process, including DNA alterations

[119], increased cell proliferation [34], apoptosis resistance

[120], angiogenesis [121], invasion/metastasis [122, 123],

and HIF-1 activation [65, 66, 68].

Although an increase in the cellular levels of ROS seems

crucial for cancer development, there is a threshold of ROS

above which cells cannot survive. An adequate increase in

the cellular levels of ROS can therefore induce cell death. It

is recognized that H2O2 is an efficient inducer of apoptosis

in cancer cells, and that the activity of several anticancer

drugs commonly used in the clinic is mediated, at least in

part, by H2O2. It has also been observed that specific con-

centrations of H2O2 can induce apoptosis in cancer cells

without affecting nonmalignant cells. This suggests that

any strategy capable of increasing the levels of this ROS

adequately may produce selective killing of cancer cells

and be useful in cancer therapy (see [33] and references

therein).

4.2 Curcumin can both decrease and increase the

cellular levels of ROS

The ability of curcumin to decrease the cellular levels of

ROS has long been recognized and has been discussed in

numerous reports. Basically, the antioxidant activity of cur-

cumin seems to be mediated by its ability to both scavenge
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ROS [70, 124–129] and activate endogenous antioxidant

mechanisms that reduce the cellular levels of ROS [40, 42,

130–135].

Although it is well known that curcumin possesses anti-

oxidant activity, numerous reports have demonstrated that

curcumin is also a pro-oxidant agent able to increase the

cellular levels of ROS [92, 100, 113, 134, 136–144]. For

instance, Kang et al. observed a significant decrease in the

levels of ROS in human hepatoma Hep3B cells treated for

8 h with curcumin at concentrations of 10 and 20 lM. At

25, 50, and 100 lM, however, curcumin induced a signifi-

cant increase in the cellular levels of ROS, which was dose

and time-dependent [138]. A time-dependent induction of

ROS was also observed when the human breast cancer cell

lines MDAMB and MCF-7 and the human hepatocellular

carcinoma cell line HepG2 were treated with curcumin

50 lM; this increase in the levels of ROS was not observed

in rat hepatocytes under the same experimental conditions.

A dose-dependent induction of ROS was also observed in

human primary gingival fibroblasts and cancerous human

submandibular adenocarcinoma cells treated for 1 h with

curcumin in the 3–30 lM range; ROS production was

higher in the cancer cells [145]. The lack of activity shown

by tetrahydrocurcumin in this study suggests that the double

bond of the two a,b-unsaturated ketones is important for

the pro-oxidant activity of curcumin [145]. As mentioned

before, Fang et al. [113] proposed a possible mechanism

involved in the pro-oxidant activity of curcumin. They

observed that curcumin irreversibly modified TrxR in vitro

(IC50 3.6 lM) and in HeLa cells (IC50 15 lM), and proposed

that this modification resulted in an increased production of

ROS by a double mechanism. Whilst the inhibition of TrxR

would impair the antioxidant thioredoxin system against

oxidative stress, they observed that the curcumin-modified

TrxR showed a strongly induced NADPH oxidase activity

that resulted in an increased generation of ROS. Since the

levels of TrxR seem higher in cancer cells than in nonmalig-

nant cells [113], this effect may contribute to explain why

curcumin induces higher ROS levels in cancer cells than in

nonmalignant cells [138, 145]. In short, experimental data

strongly support that, while low concentrations of curcumin

exert an antioxidant activity, higher concentrations of this

dietary agent produce pro-oxidant effects.

4.3 Link between the antioxidant/pro-oxidant

effects of curcumin and its cancer-related

activities

Figure 2 illustrates that the antioxidant and pro-oxidant

activity of curcumin may play a key role in its chemopre-

ventive, carcinogenic, and therapeutic properties. At low

concentrations, the antioxidant activity of curcumin would

reduce or keep the cellular levels of ROS within the physio-

logical levels. This reduction in the levels of ROS may

mediate the cancer chemopreventive properties of curcu-

min, as ROS are highly involved in carcinogenesis. At

higher concentrations, the pro-oxidant activity of curcumin

would increase the levels of ROS, which would produce

carcinogenic effects. At concentrations that result in cyto-

toxic levels of ROS, curcumin would act as a chemothera-

peutic agent.

In addition to the carcinogenic effects represented in

Fig. 2, ROS are known to activate numerous cellular targets

and pathways including, for instance, NF-jB [58], AP-1

[146], MMPs [122], TNF-a [65], Akt [147, 148], oncogen

ras, src, and myc [149–154], and the ERK/MAPK, PI3K/
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Figure 2. Possible involvement of the antioxidant and pro-oxidant activity of curcumin in its cancer chemopreventive, carcinogenic

and therapeutic properties. Although low cellular levels of ROS play an important physiological role, an increase in their levels can

produce carcinogenic effects. A sufficient increase in the levels of ROS can produce cell death and be exploited therapeutically. At

low concentrations, curcumin can reduce the cellular levels of ROS (antioxidant activity) and prevent the process of carcinogenesis,

therefore acting as a cancer chemopreventive agent. Concentrations of curcumin that result in an increase in the cellular levels of

ROS (pro-oxidant activity) that is not sufficient to trigger cell death can produce carcinogenic effects. High concentrations of curcumin

that increase the cellular levels of ROS (pro-oxidant activity) to cytotoxic levels can produce chemotherapeutic effects.
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Akt, and JAK-signal transducer and activator of transcrip-

tion (STAT) pathways [148, 155, 156]. Since curcumin can

modulate the cellular levels of ROS, it is not surprising that

it can interfere with these cellular targets and pathways (see

[5, 13, 15, 22] and references in Tables 2 and 4).

Although numerous mechanisms have been proposed to

be involved in curcumin-induced cell death, evidence sug-

gests that this process may be governed by an increase in

the cellular levels of ROS. For instance, it is acknowledged

that the inhibition of NF-jB plays an important role in cur-

cumin-induced apoptosis [54, 157–161]. However, evi-

dence supports that high cellular levels of ROS (e.g., H2O2)

can inhibit this transcription factor [162–165]; this sug-

gests that an increase in the cellular levels of ROS may pre-

cede curcumin-induced NF-jB inhibition and cell death. It

is well known that curcumin can increase the cellular levels

of ROS, and an increase in the levels of ROS has been

observed in cells undergoing apoptosis during curcumin

treatment. Numerous reports have demonstrated that curcu-

min-induced apoptosis is inhibited by antioxidants such as

catalase or N-acetylcysteine [139, 140, 143–145, 166–

168]. In addition, it is recognized that H2O2 is an efficient

inducer of apoptosis in cancer cells and that several anti-

cancer agents used in the clinic seem to exert their therapeu-

tic effects by increasing the levels of this ROS [33, 169].

This suggests that the chemotherapeutic properties of cur-

cumin may be mediated, at least in part, by an increase in

the cellular levels of ROS.

The reported selectivity of curcumin for cancer cells

[74–78] might also be explained by its ability to increase

the cellular levels of ROS. It has been observed that the

ROS H2O2 can produce selective killing of cancer cells [33,

170]. Experimental data indicate that cancer cells produce

higher levels of H2O2 than nonmalignant cells [171], and it

is recognized that there is a threshold of H2O2 above which

cells cannot survive. This suggests that specific concentra-

tions of H2O2 can increase the amounts of H2O2 to cytotoxic

levels in cancer cells but not in normal cells [33]. As men-

tioned previously, it has been observed that specific concen-

trations of curcumin can increase the cellular levels of this

ROS [92, 139, 140, 143–145, 166–168]. Overall, this sug-

gests that concentrations of curcumin that result in an

adequate increase in the cellular levels of H2O2 would pro-

duce selective killing of cancer cells.

Experimental data have shown that the therapeutic

effects of radiotherapy and some anticancer drugs are

increased by curcumin; this suggests that curcumin might

be used in the clinic to sensitize cancer cells to radiotherapy

and chemotherapy [159, 172–182]. Conversely, other

reports have shown that curcumin can reduce the activity

(and toxicity) of radiations and several chemotherapeutic

agents [183–191]. The antioxidant/pro-oxidant activity of

curcumin may explain these apparently controversial data.

It is well known that, in addition to inducing apoptosis in

cancer cells, ROS can sensitize these cells to drug-induced

apoptosis [33, 192–195]. It is also known that the therapeu-

tic effect of radiation and some anticancer agents is medi-

ated, at least in part, by an increase in the cellular levels of

ROS. Therefore, concentrations of curcumin that induce an

elevation in the cellular levels of ROS would facilitate the

anticancer effects of radiotherapy and chemotherapy. For

example, evidence suggests that ROS play an important

role in paclitaxel (taxol)-induced cell death [169] and that

curcumin sensitizes cancer cells to paclitaxel-induced cell

death [159]. Conversely, concentrations of curcumin that

produce antioxidant effects would reduce the levels of ROS

induced by radiation and chemotherapeutic agents, there-

fore reducing their activity and toxicity. Accordingly,

Somasundaram et al. [189] observed that curcumin

decreased the activity of several anticancer agents by reduc-

ing the cellular levels of ROS. Figure 3 illustrates that,

while pro-oxidant concentrations of curcumin may increase

the effects of cancer therapy, antioxidant concentrations of

curcumin may reduce its activity/toxicity.

5 Considerations for the clinical

development of curcumin as an anticancer

agent

Accumulating experimental data have revealed that curcu-

min possesses both cancer chemopreventive and chemo-

therapeutic properties. This section of the article discusses

several aspects that may help develop curcumin as a clini-

cally useful agent for the prevention and treatment of can-

cer.

S111

i 2008WILEY-VCH Verlag GmbH &Co. KGaA,Weinheim www.mnf-journal.com

Figure 3. Curcumin can reduce or increase the activity/toxicity

of radiotherapy and chemotherapy by reducing or increasing

the cellular levels of ROS. Evidence supports that the activity

and toxicity induced by radiotherapy and some chemothera-

peutic agents is mediated, at least in part, by an increase in

the cellular levels of ROS. Concentrations of curcumin that

produce antioxidant effects would reduce the cellular levels of

ROS and decrease the activity/toxicity of radiotherapy and

chemotherapy. Conversely, concentrations of curcumin that

produce pro-oxidant effects would elevate the cellular levels of

ROS and increase the activity/toxicity of radiotherapy and che-

motherapy.
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5.1 Development of curcumin as a cancer

chemopreventive agent

Epidemiological evidence indicates that people taking

higher concentrations of curcumin in their diet have lower

incidence of several common cancer types. Hundreds of

preclinical reports have shown that curcumin has cancer

chemopreventive properties. The last step before using cur-

cumin in cancer chemoprevention is the confirmation of

such preventive efficacy by using randomized controlled

clinical trials, which are commonly regarded as the defini-

tive study design for proving casualty. Three key aspects

should be considered carefully in the design of cancer che-

moprevention clinical trials: (i) the doses at which curcu-

min should be supplemented, (ii) the selection of the partic-

ipants for the trials, and (iii) the duration of the trials and

follow-ups.

Several short-term (3–4 months) human trials revealed

that curcumin induced low levels of toxicity at concentra-

tions of 3600 mg/day; these doses of curcumin have been

considered safe and are recommended for future cancer

chemoprevention clinical trials [14, 84, 196]. These doses,

however, are around 20-times higher than the doses of cur-

cumin estimated in people consuming high amounts of tur-

meric in their diet, which are approximately 150 mg/day [2,

197]. Although the use of chemicals at the maximum toler-

ated dose is a valid approach in cancer chemotherapy, this

strategy may not be appropriate for cancer chemopreven-

tion, as it may produce toxicity in the long term.

Beta-carotene is the classic example to show that supple-

mentation of dietary agents at high doses may produce toxic

and carcinogenic effects in the long term. Because the anti-

oxidant agent b-carotene is found in vegetables and fruits

and because eating vegetables and fruits is associated with

a reduced risk of cancer, it seemed plausible that taking

high doses of b-carotene supplements might reduce cancer

risk. Preclinical studies also supported the potential cancer

preventive activity of b-carotene. In three major clinical tri-

als, people were given high doses of b-carotene (20–

30 mg, which are approximately 10-times higher than those

found in a diet rich in fruits and vegetables) in an attempt to

prevent lung cancer and other cancers. These trials were

stopped ahead of schedule because two of them found b-

carotene supplements to be associated with a higher risk of

lung cancer [198, 199]. The pro-oxidant activity of b-caro-

tene may account for its carcinogenic properties observed

in these trials. Like curcumin, b-carotene can behave as a

pro-oxidant agent [200, 201], and pro-oxidant agents can

increase the cellular level of ROS and produce toxic and

carcinogenic effects. It is important to mention that, before

the trials were stopped, b-carotene had not shown any appa-

rent toxicity or carcinogenic activity during the 4–6 years

of the studies. This lack of visible toxic and carcinogenic

effects is understandable, as carcinogenesis is a long proc-

ess that remains silent until its final stages. This example

suggests that, although short-term studies can show that

chemopreventive agents (e.g., curcumin) do not produce

apparent toxicity at doses that largely exceeded those taken

in the diet, these doses may produce carcinogenic effects in

the long term. Therefore, which doses of curcumin should

be used for future cancer chemoprevention clinical trials?

Since a diet rich in turmeric is considered safe and has been

associated with a lower cancer risk, it seems appropriate to

use doses of curcumin equivalent to those found in diets

rich in turmeric. Although higher doses of curcumin may be

more effective, it seems prudent to test the safety of such

doses in long-term studies in humans before large cancer

chemoprevention clinical trials are implemented.

Although cancer chemoprevention clinical trials can be

aimed at healthy populations and at populations with cancer

predisposition (people with precancerous lesions or who

are at high risk for developing cancer), most cancer chemo-

preventive studies are implemented in those with cancer

predisposition. In addition, the limited bioavailability of

curcumin suggests that its cancer preventive activity may

be limited to the gastrointestinal tract. Therefore, it is usu-

ally considered that the cancer chemopreventive activity of

curcumin should be focused on people with colon cancer

predisposition. Evidence suggests, however, that curcumin

may also exert chemopreventive effects in healthy people

on different organs and tissues. For instance, the antioxidant

effects of curcumin following oral administration are not

restricted to the gastrointestinal tract, as they have also been

observed in other organs or tissues such as the liver [39–

44], kidneys [40, 41, 45] or the brain [41, 46–49]. In addi-

tion, oxidative stress is known to play an important role not

only in cancer progression, but also in cancer initiation.

Overall, this suggests that the evaluation of the cancer che-

mopreventive activity of curcumin should not be restricted

to people with colon cancer predisposition.

The duration of the trials and follow-ups is a crucial

aspect to consider in the design of cancer chemoprevention

clinical trials. A short trial or follow-up may hide the true

effectiveness of a cancer chemopreventive agent. For exam-

ple, a prospective epidemiological study assessed the influ-

ence of multivitamin use in colon cancer risk. Women who

used multivitamins had no benefit with respect to colon

cancer after 4 years of use (RR, 1.02) and had only non-

significant risk reductions after 5–9 (RR, 0.83) or 10–14

(RR, 0.80) years of use. After 15 years of use, however, the

risk was clearly lower (RR, 0.25 [CI, 0.13–0.51]) [202].

These data agree with the fact that cancer takes several

years or decades to develop completely; for instance, it is

estimated that 5–20 years are necessary for normal colon

cells to form adenomas and that these adenomas require 5–

15 additional years to become an invasive colon cancer

[203]. In addition, the fact that cancer is not usually

detected until it reaches its final stages suggests that we

may need to wait several years after a trial finishes (follow-

up) in order to observe a chemopreventive effect. Since the
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most reliable endpoint for a cancer chemopreventive inter-

vention is the presence or absence of cancer, we may need

long follow-up periods. It should also be noted that the fol-

low-ups of cancer chemoprevention clinical trials aimed at

healthy populations should be longer than those conducted

in people with premalignant lesions. Future validation of

reliable surrogate endpoint biomarkers of carcinogenesis

may reduce the duration of the follow-ups. In short, the

duration and follow-up of any clinical trial evaluating the

chemopreventive activity of curcumin should be designed

long enough to let this dietary agent demonstrate its puta-

tive anticancer activity.

5.2 Development of curcumin as a cancer

chemotherapeutic agent

Many in vitro studies have demonstrated that curcumin is

an efficient inducer of apoptosis in different types of cancer

cells. Some of these studies have shown that specific con-

centrations of curcumin can induce apoptosis in cancer cells

without affecting nonmalignant cells. Several reports have

also revealed that curcumin may sensitize cancer cells to

the anticancer effects of radiotherapy and chemotherapy.

These data indicate that curcumin has potential to be devel-

oped as a cancer chemotherapeutic agent.

In vitro studies have clearly established that curcumin-

induced cancer cell death occurs in a dose and time-depend-

ent manner. Cancer cells do not undergo apoptosis in the

presence of curcumin unless this dietary agent is at concen-

trations of approximately 5–50 lM during several hours.

These concentrations of curcumin are not achieved outside

the gastrointestinal tract through the oral route. In the gas-

trointestinal tract, these concentrations cannot be kept dur-

ing several hours, suggesting that the therapeutic effects of

oral curcumin are limited. Indeed, when patients with

advanced colorectal cancer were treated with curcumin at

relatively high doses, no partial responses to treatment were

observed [84]. High oral concentrations of curcumin may

produce pro-oxidant effects that, although may not be high

enough to exert a potent therapeutic effect, may sensitize

cancer cells to the effects of radiotherapy and some anti-

cancer drugs. It would be interesting to test whether the

combinations of curcumin with radiation or these anti-

cancer drugs can improve the efficiency of the standard

therapies.

Intravenous (i.v.) infusion seems to be an appropriate

route of administration to overcome the low oral bioavail-

ability and extensive metabolism of curcumin in the human

body. A continuous and prolonged administration of curcu-

min through the i.v. route would allow high concentrations

of curcumin to be reached andmaintained in plasma and tis-

sues for longer periods of time. Curcumin has already been

administered through the i.v. route to animals [55, 204–

206], yet none of these experiments studied the safety and

chemotherapeutic effect of curcumin under these condi-

tions. It may be useful to evaluate the possible toxicity and

therapeutic effectiveness of administering cytotoxic con-

centrations of curcumin through i.v. infusion to animals

with cancer.

Although i.v. infusion seems to be the most straightfor-

ward route of administration to overcome the low oral bioa-

vailability and extensive metabolism of curcumin, other

delivery strategies are worth exploring [207–209]. For

example, in order to overcome the low oral bioavailability

of curcumin, Li et al. [208] encapsulated curcumin in a lip-

osomal delivery system and tested its anticancer activity. In

vitro studies revealed that liposomal curcumin inhibited the

growth and induced apoptosis in pancreatic carcinoma cell

lines. In vivo, lipomal curcumin (40 mg/kg, administered

intravenously three times aweek) suppressed in vivo growth

of pancreatic tumor xenografts without showing significant

toxicity to the host [208]. These encouraging results have

also been observed by the same research group in colorectal

cancer [209].

During the last decade, a high number of in vitro studies

have clearly established that curcumin is an efficient

inducer of apoptosis in cancer cells. In order to develop cur-

cumin as a chemotherapeutic agent, now we need to evalu-

ate its toxicity and therapeutic effectiveness in animals with

cancer. In these studies, curcumin needs to be administered

through the appropriate route or delivery system (e.g., i.v.

infusion, liposomal or sustained release technologies) in

order to achieve and maintain cytotoxic levels in the target

tissues. The next step would be the evaluation of the possi-

ble toxicity and therapeutic activity of curcumin in a group

of patients with cancer (Phase I/II clinical trial). Phase III

clinical studies would be required to compare the anticancer

efficiency of curcumin with that of standard anticancer

therapies. These studies would reveal whether or not curcu-

min can be developed as a useful drug for the treatment of

cancer.

6 Conclusions

Epidemiological studies suggest that populations that live

on a diet rich in curcumin have a lower cancer risk. Accu-

mulating preclinical studies have shown that curcumin can

interfere with an increasing number of molecular targets,

pathways and processes involved in cancer. Since a high

consumption of curcumin in the diet is considered safe, it is

commonly believed that the cancer chemopreventive and

therapeutic properties of curcumin may be accompanied by

a lack of toxicity. This belief is supported by short-term

Phase I clinical studies that have shown that oral curcumin

is well tolerated. This lack of toxicity is probably due to the

low bioavailability of oral curcumin and to the extensive

metabolism that this dietary agent undergoes in the human

body. However, these pharmacokinetic parameters also sug-

gest that many of the anticancer effects shown by curcumin
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in vitro cannot be achieved in vivo. In addition, despite

insufficient recognition, evidence strongly suggests that

curcumin can exert toxic and carcinogenic effects under

specific conditions. Although a high number of mecha-

nisms have been proposed to participate in the anticancer

and carcinogenic properties of curcumin, many of these

properties seem to be mediated by the antioxidant and pro-

oxidant activities of this dietary agent. After a critical anal-

ysis of the cancer-related properties of curcumin, several

considerations that may help develop curcumin as an anti-

cancer agent can be made. As far as cancer chemopreven-

tion is concerned, evidence suggests that oral supplementa-

tion of curcumin at relatively high doses may produce carci-

nogenic effects in the long term, that the cancer chemopre-

ventive potential of curcumin is not restricted to the gastro-

intestinal tract, and that future cancer chemoprevention

clinical trials need to be designed long enough to let curcu-

min show its putative chemopreventive effects. Regarding

cancer chemotherapy, evidence suggests that the therapeu-

tic potential of oral curcumin is low even in cancers from

the gastrointestinal tract, and that other routes of adminis-

tration (e.g., i.v. infusion) or other formulations (e.g., lipo-

somal or sustained release technologies) need to be consid-

ered to evaluate the potential of curcumin as a chemothera-

peutic agent.
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